GM Crop is a Viable Answer to Deal with Climate Stress

As the world population grows and the demand for nutritious food grows, agricultural productivity is challenged by poor farmlands and climate change. Of all the challenges, adverse climatic conditions seem to negatively impact agricultural productivity, food security, production stability, and income the most. Given this backdrop, agricultural productivity needs to increase by 65% to meet the food demand.

Genetic modification can be the flagbearer of crop improvement as it can develop climate-resilient crop varieties. Developing and adopting innovative crops backed by science is required to mitigate climate change and for sustainable agriculture.

What are GM Crops?

Genetically modified crops are plants with their DNA altered to create desired traits, typically by adding one gene from a close wild relative.

GM crops are developed to enhance traits, it could be drought resistant or pest or disease resistant. Globally, scientists are using GMOs to help farmers prevent crop loss. In addition to making some of our most valuable food crops more resilient to climate change, study shows that it has also helped in reducing greenhouse gas emissions and saving fossil fuel.

Benefits of GM Crops

GM crops are enabling farmers to protect their produce from various biotic and abiotic stresses. GMO crops offer farmers better yields that can also be resilient to droughts and floods. There are various benefits that a farmer can reap using GMO crops in the field:

· Herbicide tolerance

· Tolerance to plant pathogens

· Protection against insect damage

· Less water consumption

· Optimum nutrition

· Low carbon footprint

Above all, the farmers reap higher profits in terms of lower inputs which most conventional crops cannot offer.

India should Embrace GM Crops

Despite being agricultural land, India continues to face major challenges when it comes to its agriculture output. Over the last 15 years, biotechnology has enabled approximately 17 million farmers to grow GM crops offering one of the most promising solutions for meeting the world’s food security.

Bt cotton’s spectacular success is evidence of the success of biotechnology in India. As with Bt cotton, a switch to high-yield oilseeds engineered specifically for India’s semi-arid zones can help reduce India’s dependence on imports just as Bt cotton allowed it to transition from being a net importer to a net exporter.

Moreover, mustard is one of the three largest oilseed crops in India, along with soybeans and groundnuts, but yields have stagnated for many years. The total edible oil consumption in India is nearly 22 million metric tons, while the domestic production is only about 10.65 million tons. Edible oil is India’s third-largest import item after crude oil and gold. Increasing the production of oilseeds, particularly mustard and soybean, is a wise idea for many reasons. In addition to one ton of oil, a farmer also produces a ton of cake, which is a protein-rich feed for animals. An Indian farmer’s dependency on pesticides can be reduced through biotechnology or using GM crops.

Research has shown that biotech crop’s adoption is three times as fast in developing countries as they do in industrialized ones.

However, besides enormous benefits, the GMO crop yet requires its fair share of recognition and acceptability in the consumer market. The urban consumer is open and aware of the multifaceted benefits of GM food and understands how well-suited it is for human health. It is now time that consumers demand such quality food so that farmers who want to grow them and are stuck due to regulatory lacunae can finally get the chance to grow them.


India is one of the largest exporters and consumers of rice. Still, Indian farmers have to incur losses due to drought, flood, continuous and intermittent rainfall, manual harvesting, etc. Nearly three billion people around the world eat rice as their main source of nutrition. It is responsible for generating about 20% of the calories consumed worldwide. Till now only golden rice has been developed by scientists that can help people with Vitamin A deficiency and the Philippines is the first country to approve the crop for commercial purposes. GMOs can develop rice suitable for severe climatic conditions.


Another example of a successful GMO crop is Soybean which is the highest exported crop from America. The GMO Soybean is spliced with the pigeon pea gene which makes it resistant to Asian soybean rust or ASR caused by fungus. This disease spreads quickly and can only be treated by the introduction of a fungi-resistant trait of another legume.


India introduced Bt cotton almost twenty years ago. Bt cotton is a genetically modified variety of cotton. Toxins produced by Bacillus thuringiensis are highly toxic and have been found to control bollworm larvae, which commonly attack cotton crops. In India, Bt cotton was introduced to reduce the amount of insecticide required for cotton farming. Since this plant was introduced, Bt cotton is widely used throughout India. The majority of Indian cotton is now Bt. It is estimated that 80% of cotton grown in each of India’s nine cotton-growing states is Bt cotton.


Cooking oil and margarine are primarily made from GMO canola. Animal feed can also be made from canola seed meals. Many packaged foods use canola oil to enhance the consistency of their food. American farmers benefit from GMO canola’s herbicide resistance, which helps them control weeds within their fields more easily.

As the world’s population and demand for food grow, farmers and growers must also deal with the problems nature throws at them. The traditional plant breeding methods still have their place. Researchers must develop crops resistant to pests, which can flourish even as the climate crisis develops. This will enable them to avoid food shortages in poorer countries especially. Easing out GMO regulations in India can bring favorable changes as the weather conditions become extreme shortly. GMOs can have positive effects, but regulatory frameworks should be strengthened so that the commercialization of GMOs does not suffer from delays. In several developing countries, GM crops are not yet allowed due to the lack of regulatory frameworks, or they are regulated excessively even when they have a defined framework. This example of Golden Rice illustrates how excessive regulations can delay a technological breakthrough for more than a decade. The delayed approach should not lead to an increase in poor statistics. As a result, regulators and political drivers in developing nations must take steps forward when it comes to approving these nutritious and safe crops.  

IPR, Innovation & Agriculture

Globalization has led to a knowledge-based economy, and intellectual property rights protection has become an important motivator for innovation. Agribusiness was not historically concerned with IPR, as farming was based on sharing knowledge. Yet, the last few decades have witnessed remarkable advances in agriculture. The development of genetically modified plant varieties and specialized insecticides for pest control warrants an examination of the IPR regime of developing nations, particularly India. This is to encourage the introduction of innovative agricultural practices.

Patent rights are particularly important for technological innovation. By extending the patent scope, and increasing the number of inventions that are patentable, the patent system becomes more useful to inventors and contributes to social welfare. This gives inventors an incentive to invest in research and development since patent rights provide exclusivity on the invention.

IPR in agriculture in India

IPR in agriculture are used to protect goods or services produced in agricultural sector and mainly deals with patents, plant breeder’s right, trademarks, geographical indications and trade secrets. India Patent Act 1970 and subsequent amendments to it provided patents for agricultural tools and machinery or theprocesses of development of agricultural chemicals. Till the beginning of 2005, only method inventions relating to substances prepared by chemical processes were patentable. Then Government of India passed the Protection of Plant Varieties and Farmers’ Rights (PPV&FR) Act in 2001. It became the world’s only IPR legislation on plant varieties that recognised and protected the rights of both breeders as well as farmers maintaining traditional landraces. The PPV&FR Authority set up under the Act started functioning from 2005.

The PPV&FR Act entitles farmers to save, use, sow, re-sow, exchange, share or sell their produce, including seed from a protected variety, as long as they do not resort to branding or packaging of the variety for commercial purposes. At the same time, breeders have exclusive rights for the commercial production, sale, marketing, distribution and export of their protected varieties.

Further, any plant breeder or researcher can use a registered variety for conducting experiment and research, or as an initial source of genetic material (parent) for the purpose of developing another variety. This is acceptable so long as the protected variety isn’t used as parent repeatedly for the production of commercial seed, which requires the prior authorisation of the original breeder/farmer.

IPR protection could lead to a significant increase in agricultural production

Agricultural innovations include developing healthier, safer, and more nutritious food for humans and animals (for example, genetically modified seeds, new breeding techniques). In the agricultural sector, innovation drives productivity.  However, there are grey areas in the Act which helps the unscrupulous to steal the varieties and develop substandard seeds which results in crop failure for the farmers.

Agriculture has made some remarkable advances in recent decades, especially in the transfer of beneficial traits into many crops that would otherwise face extinction due to diseases, droughts, and pests. With the help of resistant seed varieties, crops can provide greater yields while at the same time requiring fewer chemical fertilizers. It is particularly valuable for farmers in developing countries such as India. A significant contribution can be made to poverty reduction, malnutrition, food security, and disease control through the use of this part of agricultural innovation.

Farmers, researchers, private businesses, advisors, non-governmental organizations (NGOs), consumers, and many others are involved in guiding, supporting, creating, transferring, or adopting agricultural innovations, and also advising and informing farmers and the public about them.

The importance of intellectual property protection for agricultural innovation has grown over the last few decades in India. Even though investing in innovation is one of the primary drivers of economic growth, governments are constrained when it comes to funding innovative projects, including agricultural research and development. Crop innovation involves five stages – discovery, proof of concept, early development, advanced development and pre-launch which It can take between 10-15 years to develop commercially viable seeds. Hence, patent protection and regulatory compliance allow investors to make long-term investments in innovation. Consequently, IP rights have received increasing attention for supporting agricultural development, including foreign direct investment (FDI), technology transfer, trade, access to genetic resources and protection of traditional knowledge. 

In addition, intellectual property rights, primarily patents, have enabled plant genomics research to grow. Researchers are using advanced genomics to identify, map, and understand the gene expression of crops and their relationship to agriculturally significant traits.

IP rights play a key role in enabling companies to attract investors and generate the returns necessary to recoup development costs and invest in further R&D.Lack of IP rights discourages innovators to invest such huge sum of money to a technology. A balance between protecting the IP rights of breeders and allowing the technology flow to benefit the farmers and the whole ecosystem has to be implemented. This can only happen when there are strict actions taken for unscrupulous activities that can harm not only the technology but farmers who are vulnerable to a crop failure. This is great setback for the genuine market players who started with the vison of empowering the farmers with a breakthrough product but ends up losing trust and a return on investment.

Pin It on Pinterest