We don’t just eat to stay alive; food decides our way of life and daily lifestyle. However, how we now produce food can impact the environment by polluting land and water, hastening climate change and the biodiversity, and decreasing the productivity of our farms and fields, over time. Global food production must become sustainable in the coming years to help agricultural communities flourish and facilitate the restoration of natural resources.
When we look for solutions to strengthen the global food supply chain while dealing with the deteriorating consequences of climate change, regenerative smart agriculture is one of the most practical answers to boost food production to feed the expanding world population. A sustainable food system can take us beyond simple sustainability and accelerate positive growth that benefits the millions of farmers and other food producers across the globe.
REDUCING NATURAL RESOURCE USE FOR SUSTAINABLE PRODUCTION
Regenerative smart agriculture focuses on reducing the resources needed for food production, principally soil and water, but not exclusively, to ensure sustainable production. It considers water bodies, rivers, and lakes to improve the health of the farm’s environment. The health of the soil is a primary focus area, but other factors, such as fertilizer and water management, are also taken into account.
Smasrt farming creates healthier soils, producing food of superior quality and nutrient density, improving rather than degrading the environment, and ultimately resulting in productive farms, economies, and communities. Farming methods like conservation tillage, crop rotation, pasture cropping, and mobile animal shelters enrich topsoil and increase food production.
WHY IS SUSTAINABLE AGRICULTURE ESSENTIAL?
The loss of the planet’s biodiversity, and degradation of fertile soils threaten our continued existence. Chemical pollution, decarbonization, and desertification contribute to soil deterioration rates. These factors have the potential to seriously harm not only public health but also the quality of the food supply, leading to malnutrition. We need to re-carbonize and safeguard the soils to have enough arable topsoil to feed ourselves. An essential part of regenerative farming consists of diversifying species above and below the earth to boost biodiversity. For instance, planting a million trees on farms and in landscapes, such as fruit and shade trees in cocoa-growing regions, aids in the restoration of crucial ecosystems.
ROLE OF TECHNOLOGY
Regenerative tools, including no/low till, crop rotation and diversity, cover crops, and lowering farm inputs all contribute towards sustainability. Precision agriculture components like deeper analytics to guide seed selection, inputs and pest management offer advantages from a conservation viewpoint over a reasonable period. Today, we have access to innovative, and ever-more-precise methods. A new area of aided breeding has opened up due to decoded genomes and methods for analytics and regulating genes that drive particular plant features. This can include transgenic (foreign gene modification/insertion) and intragenic (internal gene alteration).
CONCLUSION
Food production has impacted the environment and it is a significant contributor to greenhouse gas emissions and uses 70% of all freshwater. On the other hand, it is also responsible for the livelihood of a substantial part of the world’s population.
Smart agricultural techniques combined with emerging technologies can help us effectively deal with these challenges. Changing to a food system would allow us to produce food both on land and at sea in ways that are compatible with the environment. Together, we can turn the challenge of securing global food security into our most incredible opportunity: we can build sustainable agriculture systems that foster growth for people, businesses, and the environment.
In addition to traditional solutions, new and developing technologies will undoubtedly be used in the future of food and agriculture. While creating a food supply for a rapidly expanding population, we can restore habitats, protect clean drinking water, increase biodiversity, and reduce greenhouse gas emissions by developing innovative strategies in collaboration with producers.
References:
The future of food: The regenerative imperative (newhope.com)
https://tractorguru.in/blog/regenerative-agriculture-in-india-for-leading-to-productive-farms/
https://regenerationinternational.org/why-regenerative-agriculture/