Fading of Anti-GMO Evident with Consumer Acceptance globally

The anti-GMO movement is characterized by overwhelming fallacies. The most common of these fallacies is the assumption that crops enhanced using biotechnology is an unnatural deviation from an otherwise pure state of nature. This idea is fundamentally flawed on a number of levels, yet it continues to be parroted by naysayers alike.

For many years, NGOs such as Sierra Club has been vocal about its concerns over crop biotechnology. The environmental group that refers to gene editing as a weapon of mass destruction recently overturned the GMO debate when it cautiously endorsed the release of a genetically engineered chestnut tree called “Darling 58.” A newer variety of chestnut trees which are bred to resist a fungal infection that has killed almost all-American Chestnuts.

Similarly, the Union of Concerned Scientists (UCS) previously criticized the Impossible Burger but have recently come to support it after realizing its key ingredient is made with help from genetic engineering.

When organizations like the Sierra Club and UCS that are well-known for their opposition to biotechnology backtrack on the issue, it can be believed that the impact is substantial.

In Europe as well, the situation has changed since the COVID-19 pandemic. Europe suspended its biotech regulations in July 2020 amid the threat of a new infectious disease it didn’t want to fight against with outdated technology, making quite clear that the world’s assumption of genetic engineering having disastrous side effects, was completely wrong. Europe has not been a friend to genetically modified organisms in the past, but there are indications that its anti-GMO sentiment is beginning to weaken. One reason for this might be that biotechnology can help meet their sustainability goals. It is to be noted that while Europe is opposed to GM crop cultivation, they are the biggest importers of GM derived food.

Healthier soybean oil and non-browning apples are among the examples of genetically modified foods.Many products developed through biotechnology are recognized today in the form of new varieties including watermelons, eggplants, carrots, pineapple, papaya, bananas among others. GMO is a safe and effective way to improve crops for better quality food.

SARS-COV-2 became unstoppable shortly after it started spreading globally, and humans have realized that our way of life is very fragile and we will not be able to sustain ourselves in a world full of deadly diseases when we lose access to innovation (tools).

Food production could be said to work the same way. The anti-GMO movement is unlikely to disappear overnight. They have a great deal of sway in poorer regions of the world. However, they are also losing this debate in these places. In 2019 alone, 24 developing countries grew biotech crops. Biotech plants are grown in the developing world and 56 percent of all the plants grown in the world are genetically engineered.

The familiarity of consumers with new biotechnology tools such as CRISPR, GMO indicates that efforts to increase awareness of these technologies could help to accelerate their acceptance by consumers.All over the world scientists are working on ways to feed more people by using CRISPR. However, it will be the public acceptance and adoption by farmers that will play an important role in the success of this technology.

 

 

United Nations Food Safety Summit 2021 – An opportunity to Help India in adopting innovations to strengthen the Food supply chain

The UN Food Systems Summit during the UN General Assembly in New York aims to achieve the Sustainable Development Goals by 2030 along with transforming the global food systems.

Nearly 18% of the planet’s population lives in India, making this summit of paramount importance for our nation. For the UN Food System Summit 2021, India has volunteered to participate in the Action Track 4: Advance Equitable Livelihoods.  As a part of this initiative, India will encourage stakeholders in agri-food systems to explore national pathways towards creating sustainable and equitable food systems in India, which can contribute to the transformation of global food systems in order to meet the growing needs of present and future generations. Additionally, India aims to eliminate poverty & hunger, ensuring nutrition security so that all people can eat healthy food, and ensure economic sustainability in food supply.

Along with a rise in population, climate change has an important role to play in the productivity. Drought, floods are rampant in India, and it has direct impact in the food supply chain, right from sowing, production, to supply. Adoption of technology and innovation in the sector has become a necessity but it has not turned to reality. Innovation in developing seeds with sturdy built to shield from unpredictable weather conditions and technologies to support its growth, storage for longer shelf life can help in transforming the food systems.

Biotechnology has been crucial in developing food products that have proven beneficial for the farmers and environment. As per a report by the PG Economics, with the adoption of GM crops between 1996 and 2018, an additional 824 million tonnes of food, feed and fiber has been produced worldwide. Farmers earned an extra US$225 billion in income by growing GM crops during that same period, while reducing the use of agricultural pesticides by 8.6 percent, resulting in a 19 percent cut in associated environmental impacts. The technology also helped reduce carbon emissions equal to taking 15.3 million cars off the road. Because GM crops increase yields, if they had not been available during that time some 24.2 million extra hectares of land would have been destroyed to make way for the same amount of crop production.

In 2002, the introduction and commercialization of Bt (Bacillus thuringiensis) cotton (the only genetically modified crop in India so far) along with huge investments in R&D by private seed companies, ushered a Gene Revolution in the agricultural sector. This led to a breakthrough in cotton production, rising from 13.6 million bales in 2002-03 to 37.5 million bales in 2019-20, surpassing China in 2014-15 to become the largest cotton-producer in the world. The effect of fertilizers, Bt technology and insecticides contributed to 60, 23 and 17 percent of cotton yield, respectively in India. The benefit of Bt technology in cotton is estimated to be USD 84.7 billion (cumulatively between 2002-03 to 2018-19) through savings in imports of cotton as well as extra exports of raw cotton and yarn.

Modern biotechnologies involving gene editing and molecular biology have seen significant opportunities for crop improvement in the cereal crops – rice, maize, wheat and barley. Genome editing has been used to achieve important agronomic and quality traits in cereals. These include adaptive traits to mitigate the effects of climate change, tolerance to biotic stresses, higher yields, more optimal plant architecture, improved grain quality and nutritional content, and safer products. Not all traits can be achieved through genome editing, and several technical and regulatory challenges need to be overcome for the technology to realize its full potential.   

Modern agricultural tools have the potential to significantly contribute to achieving the SDGs. Biotechnology can boost the quality and yield of agricultural products, thus achieving SDG-2-end hunger by making food more secure, improving nutrition, and promoting sustainable agriculture. It also plays an essential role in diagnosis and finding the right solutions to pause pests and diseases through several tools, therefore achieving SDG-3-Good Health and Well-Being.

Biotechnology is not a silver bullet, but it can help scale the SDGs. Multifaceted solutions are required for strengthening the food value chain in India. The evidence suggests, however, that improving crops through new tools such as gene editing can play an important role in a more comprehensive food security strategy. 

The UNFSS 2021 acknowledges that consumer groups are an important stakeholder in this fight. Therefore, this group has the responsibility to understand and spread awareness on the benefits of nutrient rich food and should actively take part in adopting them. Agriculture biotechnology is just a value addition to get the best product out of the existing crops which can benefit the farmers, people and the planet.

Philippines is a Big Inspiration for India to Address Nutrition Deficit

Nutrition of the mother and child during the first 1000 days plays an important role in a child’s neurodevelopment and lifelong mental health. A child’s brain development depends on the number of calories their body receives during pregnancy and as a child.

In a recent study conducted by the Food and Nutrition Research Institute (FNRI), 26.2 percent of Filipino children aged zero to two are chronically malnourished.

Undernutrition, hidden hunger or inadequate nutrient intake, and overweight constitute malnutrition in Philippines.Filipino children make up one third of the top ten countries in the world when it comes to stunting (low weight).Conditions such as low iron and iodine intake are still common among babies and pregnant women.Overweight and obesity are on the rise among children aged 11-19, with nearly half experiencing overweight or obesity. 

Vitamin A deficiency (VAD) affects one in five Filipino children from the poorest communities. Children affected by the condition are at higher risk of blindness, as well as weakened immune systems.

Genetically modified Golden Rice has been approved for cultivation in the Philippines because it contains nutrients that can promote good health, especially for young children.As a result of the commercial cultivation license issued on July 21, a decades-long effort has succeeded in creating rice with higher levels of beta-carotene, which the body converts into vitamin A, an essential nutrient.

Philippines now ranks among the top countries in the world when it comes to leveraging agricultural research to tackle malnutrition and its related health impacts in a safe and sustainable manner.Precision breeding innovations such as genetic engineering and gene editing can open new pathways to a more inclusive food system by improving rice varieties that meet farmer, consumer, and environmental needs.

According to the State of food security and nutrition in the world, 2020’ report, 14 per cent of India’s population is undernourished. It has further reported that 189.2 million people are undernourished in India while 34.7 per cent of the children aged under five are stunted in the nation. On top of it 20 per cent of India’s children under the age of 5 suffer from wasting. 

Malnutrition is undoubtedly one of the major issuesfaced by the country. In addition to the distribution of prophylactic medication against nutritional anemiaand IntegratedChild Development Services (ICDS), , several governments have introduced large-scale supplemental feeding programmes.

A recent initiative by the Government of India, Poshan Abhiyaan, aims to eliminate undernutrition in children (stunting and underweight) and anemia in the country. Its ultimate objective is to create a mass movement for holistic nutrition in the country.

India can seek inspiration from Philippines by introducing high value nutrition crops along with conventional crops. If Philippines with 11 crore population can take a proactive approach in addressing the nutrition gap though scientific achievements in crop biofortification, India with a population of over 100 crores, needs to tackle the malnutrition issue head on. It is high time that the Government, local authorities, and citizens should make a collective effort to support new technologies in crop improvement and sustainable agricultural development for holistic nutrition along with eliminating hunger.

 

 

Minichromosomal Technology in Agriculture

Minichromosomes are small structures within cells that contain very little genetic material but can store large quantity of information. By using minichromosomes, agricultural geneticists can add dozens of traits to a plant. These traits can be agronomically beneficial ones like drought-tolerant and improved nitrogen usage. Minichromosomal technology does not alter the genes of plants in any manner, resulting in faster regulatory approval and acceptance by farmers.

This technology provides a way to add genes to a synthetic chromosome in a sequential manner. Telomere shortening along with the introduction of site-specific recombination, which is when two molecules of DNA exchange pieces of their genetic material with each other, has proven to be an easy method to produce minichromosomes.

Growing population, accelerating climatic changes resulting in extreme temperature, unpredictable rainfall, degraded soil, resistant pests etc are all contributors to a bad recipe of lowering crop yields. New crop varieties that can withstand these pressures is a necessity.

The potential for genetic engineering can be enhanced through technological advancements, for example, plant artificial chromosome technology, allowing for the management of a large number of genes in the next generation of genetic engineering. As a result of tools such as gene assembly, genome editing, gene targeting, and chromosome delivery, it is possible to engineer crops with multiple genes.

Through the above advancements in agriculture, both the herbicide resistant genes and the Bt toxin genes can be introduced into crops for effective weed control and insect resistance. As a result, the engineered crop will reduce the application of pesticides that are harmful to humans and the environment. 

For farmers to meet the rising consumption demands, they will need at least 23% more agricultural product than they currently produce. According to estimates, the demand will rise by 50%–70% as a result of both population growth and changing dietary habits.

In existing agricultural methods, yield increases are typically achieved by regulating natural resource usage and are not too environmentally friendly. As a consequence, it is necessary to use new technologies to grow superior crops.

The use of genetically engineered crops has spread to major crop producing countries. Induction of Bt toxin and herbicide resistance genes from micro-organisms into plants has changed agriculture, causing weeds to be controlled effectively and chemical pesticides to be reduced. Agriculture has undergone the most significant development in the past century and genetic engineering is poised to become the primary method for meeting the growing demand for agricultural products in the future.

Results of such technology are Arctic apples, which are among the first food crops to gain attention of consumers with benefits like non-browning and protecting its flavour and nutritive value.

Potato varieties that are genetically engineered to resist potato blight can help reduce the use of chemical fungicides by up to 90 percent, reducing the environmental impact of potato farming. In addition, potatoes will have reduced bruising and black spots, improved storage capability and a reduced amount of a chemical which develops when potatoes are cooked at high temperatures and could be potentially carcinogenic.

Researchers have shown that changing a gene that makes plants grow better, regardless of growing conditions, reliably increases corn yields by 10%. The newer varieties of genetically modified corn are drought tolerant, produce greater amounts of ethanol, and have higher lysine content. These plants are insect resistant, herbicide resistant, and drought resistant. 

GMO soybean oil has no trans-fat and more monounsaturated fats, which are considered for healthy heart. Herbicides and insects are also tolerant to the new soybean variety.

In Hawaii, genetically modified papaya varieties known as Rainbow and SunUp have been developed to resist papaya ringspot virus.

The genetic modification of summer squash and zucchini has been helpful. Most GMOs are designed to be resistant to herbicides or produce insecticides, whereas GMO squash is designed to be resistant to certain types of viruses. Most of these viral diseases are caused by the Zucchini yellow mosaic virus. Because it is related to ringspot disease in papayas, it is transmitted by aphids and makes infected plants produce small, unhealthy fruit.

In terms of acreage, alfalfa ranks fourth behind corn, soybeans, and wheat in the United States. Due to weed infestations, alfalfa yields are reduced, forages are of lesser quality, and insects are more likely to invade. It is engineered to respond to the herbicide Roundup, allowing farmers to spray the chemical on weeds without harming the plants.

Genetic modification is frequently used to improve the quality of canola oil and boost the plant’s tolerance to herbicides. The United States grows over 90% GMO canola crops. Plants that grow canola produce oil and meal, which are commonly used for animal feed.

Bt cotton produces an insecticide to combat bollworms, one of the crop’s primary pests.

The current application of minichromosome technology is to allow stacking of genes involved with herbicide tolerance and pest resistance genes. Plants could gain new properties or synthesize new metabolites in the future with the addition of entire biochemical pathways. Minichromosomes can be produced in most plant species for a wide spectrum of new applications.

Genetic modifications Can Save Forest Biodiversity

Forests are constantly under threat of encroachment due to human activity and industrialization. Conservation of forest biological diversity along with forest’s genetic resources is vital as it can protect the health of regional ecosystems. It is crucial to sustain forests to minimize threat to the environment. 

While on one hand, appropriate management practices are required for forest conservation, the incorporation of genetic modification and genetic engineering technologies can bring sustainable changes in forest lands.

Advances in forest genetics will contribute to understanding how tree species can take advantage of new breeding programs. Mapping genetic diversity will enable traceability of wood products and the forest reproductive material.

Genetic engineering can help develop sustainable forest tree varieties by precise modification of genetic material to obtain resilience in the forest ecosystem. Various genomic research is being carried out by the scientists and researchers throughout the world to breed varieties specially for the forest.

For instance, forestry scientists in Scotland have created the first variety of elm trees which were genetically modified to resist Dutch elm disease.  Dutch elm disease couldn’t be managed through traditional plant breeding which made scientists realize the inclusion of biotechnological applications such as genetic engineering. Scientists say some of the trees have attained a height of five feet. Dutch elm disease is reported to have diminished more than seventy percent of fully mature population of elm trees. Genetic modification could save these trees from extinction and can help conserve the forest ecosystem.

On the other hand, Eucalyptus trees can also be genetically modified to restrict sexual reproductions, to not invade the native ecosystems. Approximately seven percent of the world’s forests are plantations while twenty-five percent of plantation is inhibited by either hybrids or nonnative species. Eucalyptus is the most commonly planted genera of forest trees. It covers around 5.7 million hectares in Brazil, 4.5 million hectares in China, and 3.9 million hectares in the Indian sub-continent.

The ability to sexually reproduce leads to the mingling of the Eucalyptus trees in the native ecosystems. Through genetic modification, this characteristic can be switched off permanently and the unnecessary invasion to neighboring areas can be restricted.

Global warming is impacting the world’s forests leading to disruption of natural resources and reservoirs. Trees in the forests are unable to withstand the harshness of global warming as well as the shrinking of the forest land. Hence, the forest reserves are under rapid depletion. Conventional breeding doesn’t provide much hope for sustainable achievements due to marginal approaches while genetically advanced applications such as CRISPR can aid in conserving the forest biodiversity at a quicker pace.

One similar case happened with the American Chestnut which played a significant role in the eastern US. However, the loss of American Chestnut put the ecosystem in jeopardy, which also led to the extinction of seven moth species.

Today, with genetic engineering approaches, researchers are developing blight-free American Chestnut variety. This was a promising deal that led to the first field trial of genetically engineered trees in 2006. The genetically engineered American Chestnut trees proved resistant, and the trait was passed down to offspring which will continue to generate blight-resistant American Chestnuts in the years to come.

This technology has the potential to conserve forests up to a greater extent. Also, it will introduce forest biodiversity to an entirely newer mechanism of plant breeding.

Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4967086/

https://today.oregonstate.edu/news/research-suggests-eucalyptus-trees-can-be-genetically-modified-not-invade-native-ecosystems

https://geneticliteracyproject.org/2021/04/13/global-warming-is-causing-eucalyptus-trees-used-for-lumber-to-invade-native-ecosystems-crispr-gene-editing-now-poised-to-prevent-that/?mc_cid=d9697c64e8&mc_eid=b993433273

https://massivesci.com/articles/chestnut-tree-genetic-engineering-blight-fungus-resistance/

Impact of Climate Change on Plant Pest : How It can be Avoided?

With the current rate of extreme climate change globally, it will keep affecting the entire ecosystem and agricultural production worldwide. The impact of climate change can also be seen in the increase of plant pests, and it has a direct relation to international trade as plant pests are not only limited to a particular region.In a nutshell, climate change poses a newer challenge to the international plant health community and this issue is of utmost importance as it has a direct co-relation to the lives and livelihoods of the population involved in agriculture.

The increase of CO2 can trigger the level of simple sugar in leaves. It also lowers down the nitrogen content in a plant leaf which encourages pests to consume more leaves to supplement their nitrogen requirement. It negatively impacts the growth of a plant and leads to compromised yield quality which is neither nutritious nor resistant to climactic situations.

Elevated CO2 levels and raised temperature can also alter the population composition and duration of the infective stages of various pests and the diseases caused by them. It can be seriously hazardous for plant health.

It is evident in perennial orchards that trees get attacked by more than one generation of pests. Contrary to popular belief, the temperature rises more during the night than daytime. Hence, the higher nocturnal temperature will aid in reducing the period for leaf-wetness. It is crucial to control a pest or disease through biological means or by introducing their natural enemies.

India majorly has small farm holdings thatare fragmented. Farming cooperatives can help in the facilitation of integrated pest management.  Since India is a warm country, it requires a synchronized approach to beat the pest and diseases which are often more prevalent during summer and monsoon. A systematic application of suppressing the pest activity can eliminate chances of plant pest and it will result in qualitative yield.

Pest outbreaks can cause extensive damage. Our history has a lot to show in this regard. Earlier too, plant pests have had a hugely negative impact on social and economic conditions accompanied by the invasion and destruction of European vineyards by the insect – phylloxera.

Also, the invasion of the Colorado beetle in the twentieth century led to the rapid colonization of potato plots is another example of pest outbreaks.

Here are a few more to discuss that include the Irish potato famine caused by Phytophthora infections, the Great Bengal Famine by Helminthosporiumoryzae, and the chestnut blight caused by Cryphonectriaparasitica, responsible for wiping out the entire American Chestnut trees.

Wood packing, seeds, planting material, soil, and the growing international trade are responsible for pest transfer from one place to another and one climatic surrounding to another in which pests find their way to survive and weaken the plant immune system by causing various diseases.

Therefore, it is crucial to continue using scientific innovations and biotechnology to improve crop varieties that can withstand biotic and abiotic stresses. Now is the time to accept climate-resistant crops to suppress the occurrence of plant pests.

Source: http://www.fao.org/3/cb4769en/cb4769en.pdf

https://www.downtoearth.org.in/blog/climate-change/how-is-climate-change-affecting-crop-pest-and-diseases–54199

http://www.indiaenvironmentportal.org.in/content/470688/scientific-review-of-the-impact-of-climate-change-on-plant-pests/

Innovation through gene-editing can address Climate Change

Climate change is a major challenge globally and like other sectors, agriculture too is hugely impacted. Incessant rains, drought and frequent pests and disease outbreak are all signs of the deteriorating effects of climate change.

There’s a lot of work to be done in agriculture that can sustain the overall health of the current farming system. It is high time to adopt new scientific solutions to reduce input resource requirements and the impact on the environment. The aim is to adopt climate-smart solutions supported by digital farming techniques and improved plant breeding technologies.

Amongst the new technologies, gene editing has shown enormous potential to address climate change in the most efficient manner. Here’s how gene-editing applications can bring a positive impact in the sector:

  • Improve carbon capture by the crops and reduce the harmful carbon dioxide
  • Reduce/minimize agricultural inputs so that GHG emissions are reduced.
  • Developing climate-resilient crops.

How Gene Editing Can Reduce Greenhouse Gases in The Atmosphere

Through gene editing innovations by plant biotechnologists, they have been able to achieve desirable traits in plants. A few of the ways that validates how gene editing can be helpful are stated below.

Carbon trapped in roots

It is evident that bigger and deeper roots trap carbon, keeps it submerged into the ground for a longer duration, and limits its release into the atmosphere. Gene editing plant alone has the potential to curb 46% of the excess carbon emitted on an annual basis worldwide.

Carbon absorbing trees

Gene editing could enable replenishment of otherwise endangered American chestnut trees which absorb and store large amounts of carbon to supply fuel for their growth.

Low-carbon biofuel

Through gene editing, it is possible to create varieties of pennycress which is high in oleic acid. It is a proven fact that oleic acid can be converted into biofuel for jets. Pennycress is also used as a cover crop by farmers during off-seasons. It helps them prevent tons of soil erosion.

Food waste management

Appropriate food waste management can help save the environment from harmful gases released as a result of emissions from the waste. Gene editing can diminish potato wastes to half and can reduce the waste of other food products too. Gene edited non-browning mushrooms are another example of food waste reduction. 8% of greenhouse gases are released from food waste alone. By developing innovative varieties which are gene edited, one can save the planet from harmful emissions.

Curbs emissions from fertilizer production

Gene-edited corn can access nitrogen from the air which diminishes the use of nitrogen-enriched fertilizer, thereby helping the environment.

Gene editing is undoubtedly an innovative technology to meet the challenges posed by climate change. Scientists and researchers worldwide are developing varieties that can be beneficial not only to humans but to the environment too. Through gene editing, one can quickly bring the desired traits in a plant which would otherwise take decades in case of conventional breeding.

Biotech Cropscan helpto Conserve Biodiversity

Today, agriculture sector requires an approach that can bring sustainable changes in the practices of sowing, growing and harvesting crops. Crops grown through modern scientific intervention like biotechnology is one of the solutions to grow food sustainably. Using biotechnology is one of the ways which can contribute to sustainable agriculture practices through conserving natural resources, including biodiversity.

The GM crops have been grown for 25 years and have had a positive impact on biodiversity through increasing yield and productivity. Higher yields per acre of land have reduced the need to convert forests into farmland, thereby conserving biodiversity.GM crops cultivars also facilitates the adoption of conservation tillage which further ensures sustainability. Scientific reviews of GM crops by several researchers and scientists also confirmed that they have no negative impact on the environment, flora, fauna or humans. According to a recent report based on an assessment by the U.S. National Research Council GM crops are less damaging to the environment than the non-GM counterparts. Rather, GM crops help in decreasing pressure on biodiversity while helping in feeding the rapidly increasing population for the next thirty to forty years.

Biotechnology (GM crops and gene editing) is being adopted on a world-class level to support and strengthen the food value chain and enhance biodiversity. The new technology, gene editing, for which Noble Prize was awarded in Chemistry has shown immense success. Besides a few commercialization, several pipeline innovations using gene-editing indicates that it has the capacity to not only alleviate the impacts of agriculture on biodiversity but also actively help conserve dwindling species and ecosystems.

For instance, research is ongoing for crops like rice and wheat to introduce insect-resistant and herbicide tolerant varieties. Similarly, gene editing practices involving technologies to improve drought tolerance and salinity in crop plants would help in alleviating the pressure to convert high biodiversity areas into agriculture use. Instead, it will enable crop production on suboptimal soils. Low soil moisture will be tackled through drought-tolerant crops that will withstand this condition. Drought tolerance technology will have an optimal use in areas like sub-Saharan Africa, which are most impacted by drought occurrences and have minimal access to irrigation.

Gene edited varieties with highnitrogen use efficiencycan reduce or minimize the use of fertilizers and reduce the nitrogen run-off without affecting the yield production. This technology is anticipated to release in coming future.

Looking at all the plausible scenarios, gene editing crops should receive their fair share of acknowledgment and recognition across nations globally. It is high time that the farmers including smallholder farmers and commercial growers as well as the general public start gaining appropriate information and knowledge about the sustainable benefits that GM and gene editedcrops can bring. It can be possible only when scientists and researchers along with the Government raise awareness about such crop improvement techniques that can have direct impact on biodiversity and has the potential to save it from the impact of intense industrial scale agriculture.

https://training.fws.gov/resources/course-resources/pesticides/GMOs/impacts_of_ge_crops.pdf

https://www.greenfacts.org/en/gmo/3-genetically-engineered-food/5-gene-flow.htm

Why GMOs Are A Viable Solution to World Food Hunger?

Love them or hate them but you can’t ignore GMOs. They have the potential to increase yield, and qualities such as insect resistant or pest resistant provides quality produce and profits for farmers. People are still divided whether to eat GMOs or not and it is mostly because of the misinformation that is spread by ideological groups devoid of any scientific arguments.

On the contrary, GMOs are tested thoroughly for their safety to human, animals and environment before they are commercially released. GMOs are as safe as traditional crops. The time from the initiation of a discovery project, testing it for safety to human, animal and environment to commercial launch requires on average 13.1 years for all relevant crops.

Multiple studies (over 3,000) and over 284 scientific organizations including, WHO, FAO, The UK Royal Society have said that foods derived from GM plants are safe. As a matter of fact, 1785 studies on GMO safety are available on informalhealthcase website. The European Union report based on 130 research projects conducted over 25 years and involving more than 500 independent research groups, concluded that GM crops were as safe as the conventionally bred ones and had the potential to improve crops beyond the limits of traditional breeding.

Here’s how food tech can bring about various advancements in the crops:

Nutritionally enhanced crops can be developed through Biotechnology

More nutritious crops are no more a dream. It can be realized through appropriate biotechnological tools. There are several success stories such as nutritionally enhanced purple tomatoes that have higher levels of anthocyanins (naturally occurring pigment well known for its health promoting properties). Similarly, through Golden Rice Project, vitamin-A enriched rice was developed. Lack of vitamin A in the body is responsible for blindness among children.  An important crop for developing countries and for the underprivileged. There are 14 GMO crops grown across the world, however many developing countries are still waiting for their turn to enjoy the benefits.

Use of Pesticide can be reduced through Biotechnology

Only targeted use of herbicides and pesticides is required in GMO cultivation. Therefore, making the food devoid of any pesticide residue and free of pests and insects. As per research studies, crop biotechnology reduces the use of chemical pesticides by 37 percent resulting in a considerable increase of yield by 22 percent and profits of farmers by 68 percent.

Resistance to Climate Change

GMOs are developed to cope with climatic stress. The agriculture industry has been facing a lot of issues due to rapid climate change . GM crops have the potential to withstand harsh climate and can grow, with greater yield.

Biotechnology has a lot of potential to address crop-related issues such as pests infestation, biotic and abiotic stress, low nutrition crops etc. With GMOs, scientists want to help agriculture and farmers with a sustainable solution for increasing productivity and income. Turning towards scientific solutions and innovations is the need of the hour when climate change is rapid and unpredictable.

 

 

Pin It on Pinterest